Functional Walks Gallery
f(n) = 4*log(n)+25*n (mod 3)
g(n) = 5*n+13
f(n) = PRIME(n)+8+5*log(n) (mod 4)
g(n) = 99*cos(pi/2*n)+16
f(n) = FIBO(n)+1+FIBO(n)+3 (mod 9)
g(n) = 50
f(n) = FIBO(n)+7 (mod 7)
g(n) = 100
f(n) = FLOOR(n/23)FLOOR(n/23) (mod 12)
g(n) = 10
f(n) = FIBO(n)+1+4*log(n) (mod 4)
g(n) = 2*n+13
f(n) = 24*n (mod 5)
g(n) = 2*n+27
f(n) = 4*2**n+PRIME(n)+2 (mod 8)
g(n) = n**2+29
f(n) = 3*n**3+TAU(n)+7 (mod 4)
g(n) = 29*cos(pi/2*n)+22
f(n) = SIGMA(n)+4+2*FLOOR(n/26) (mod 9)
g(n) = 28*cos(pi/2*n)+21
f(n) = SIGMA(n)+4+2*FLOOR(n/26) (mod 9)
g(n) = 28*cos(pi/2*n)+21
f(n) = FIBO(n) (mod 7)
g(n) = 50
f(n) = PRIME(n)+9+5*log(n)PRIME(n)+9+5*log(n) (mod 10)
g(n) = 40
f(n) = n (mod 7)
g(n) = n**2+30
f(n) = 3*FLOOR(n/13)+SIGMA(n)+7 (mod 9)
g(n) = n+19
f(n) = TAU(n)+3+2*FLOOR(n/26) (mod 3)
g(n) = n+27
f(n) = FLOOR(n/23) (mod 3)
g(n) = 30
f(n) = FLOOR(n/23) (mod 3)
g(n) = 30
f(n) = 24*n (mod 5)
g(n) = 2*n+27
f(n) = 5*log(n)+n**2 (mod 5)
g(n) = 120
f(n) = 4*n**2+5*log(n) (mod 9)
g(n) = 50*cos(pi/2*n)+20
f(n) = TAU(n)+3+2*FLOOR(n/26) (mod 3)
g(n) = 4*n+27
f(n) = PRIME(n)+9+5*log(n)PRIME(n)+9+5*log(n) (mod 10)
g(n) = 40
f(n) = 5*2**n+4*log(n) (mod 5)
g(n) = 30
f(n) = 2*FLOOR(n/19) (mod 10)
g(n) = 40
f(n) = FIBO(n) (mod 7)
g(n) = 50
f(n) = 22*n (mod 10)
g(n) = 4*n+62
f(n) = PRIME(n)+9+SIGMA(n)+4 (mod 8)
g(n) = 33*cos(pi/2*n)+27
f(n) = 5*n+FIBO(n)+1 (mod 7)
g(n) = 5*n+77
f(n) = 1*n**2+1*FLOOR(n/10) (mod 3)
g(n) = 40
f(n) = FIBO(n)+3+1*n (mod 8)
g(n) = n**2+30
f(n) = 2*FLOOR(n/10)+5*n**4 (mod 4)
g(n) = 2*n+30
f(n) = 68*cos(1*pi*n)+190+5*log(n) (mod 10)
g(n) = 40
f(n) = 66*cos(0.5*pi*n)+154+5*n (mod 7)
g(n) = 3*n+50
f(n) = 3*log(n)+89*cos(0.15*pi*n)+192 (mod 7)
g(n) = 42*cos(pi/2*n)+28
f(n) = 3*FLOOR(n/10) (mod 7)
g(n) = 4*n+23
f(n) = FIBO(n)+5+SIGMA(n)+6 (mod 4)
g(n) = 5*n+13
f(n) = 3*FLOOR(n/18) (mod 10)
g(n) = 20
f(n) = 64*cos(1*pi*n)+99+4*log(n) (mod 10)
g(n) = 30
f(n) = 3*FLOOR(n/19)+63*cos(0.5*pi*n)+129 (mod 4)
g(n) = 20
f(n) = PRIME(n)+8+5*log(n) (mod 4)
g(n) = 99*cos(pi/2*n)+16
f(n) = SIGMA(n)+6+3*FLOOR(n/10) (mod 4)
g(n) = 91*cos(pi/2*n)+11
f(n) = 2*FLOOR(n/10)+3*n (mod 10)
g(n) = 5*n+21
f(n) = 5*log(n)+1*n**4 (mod 8)
g(n) = 10
f(n) = 16*n+TAU(n)+3 (mod 5)
g(n) = 27*cos(pi/2*n)+14
f(n) = 5*log(n)+24*n (mod 5)
g(n) = 30
f(n) = TAU(n)+1+2*FLOOR(n/26) (mod 9)
g(n) = 30
f(n) = FLOOR(n/23) (mod 3)
g(n) = 30
f(n) = FIBO(n)+3+3*2**n (mod 5)
g(n) = 1*n+56
f(n) = SIGMA(n)+2+1*FLOOR(n/30) (mod 6)
g(n) = 30
f(n) = 3*FLOOR(n/28)+1*FLOOR(n/13) (mod 4)
g(n) = 10
f(n) = FIBO(n)+7+7*n (mod 4)
g(n) = 2*n+28
f(n) = 4*n**2+5*log(n) (mod 9)
g(n) = 50*cos(pi/2*n)+20
f(n) = 25*n+FIBO(n)+1 (mod 4)
g(n) = 4*n+32
f(n) = FIBO(n)+9+FIBO(n)+5 (mod 10)
g(n) = 5*n+54
f(n) = PRIME(n)+2+10*n (mod 6)
g(n) = 20
f(n) = 25*n+1*log(n) (mod 6)
g(n) = n**2+28
f(n) = 4*n**4+FIBO(n)+1 (mod 6)
g(n) = 4*n+22
f(n) = 2*log(n)+4*n (mod 6)
g(n) = 4*n+76
f(n) = FIBO(n)+7+7*n (mod 4)
g(n) = 2*n+28
f(n) = FIBO(n)+6+15*n (mod 7)
g(n) = 38*cos(pi/2*n)+26
f(n) = FIBO(n)+7+1*3**n (mod 6)
g(n) = 1*n+22
f(n) = FIBO(n)+10 (mod 5)
g(n) = 3*n+53
f(n) = 1*FLOOR(n/23)+1*FLOOR(n/20) (mod 4)
g(n) = 20
f(n) = PRIME(n)+3+1*FLOOR(n/20) (mod 6)
g(n) = 20
f(n) = 23*n+4*n**3 (mod 8)
g(n) = 3*n+37
f(n) = 2*log(n) (mod 8)
g(n) = 1*n+45
f(n) = 94*cos(0.15*pi*n)+103+64*cos(0.15*pi*n)+194 (mod 6)
g(n) = 20
f(n) = 3*n**3+73*cos(0.3*pi*n)+158 (mod 3)
g(n) = 2*n+53
f(n) = 3*FLOOR(n/24)+2*FLOOR(n/25) (mod 4)
g(n) = 20
f(n) = FIBO(n)+1+5*n**2 (mod 5)
g(n) = 5*n+14
f(n) = 57*cos(0.5*pi*n)+131+5*log(n) (mod 4)
g(n) = 20
f(n) = 1*FLOOR(n/19)+4*n**3 (mod 8)
g(n) = 5*n+74
f(n) = 1*2**n (mod 9)
g(n) = n**2+27
f(n) = 1*FLOOR(n/12) (mod 5)
g(n) = 40
f(n) = 16*n+2*FLOOR(n/18) (mod 9)
g(n) = 20
f(n) = 16*n (mod 6)
g(n) = 1*n+12
f(n) = 4*log(n)+100*cos(0.15*pi*n)+101 (mod 6)
g(n) = 40
f(n) = 4*log(n)+22*n (mod 9)
g(n) = n**2+30
f(n) = FIBO(n)+3+1*n (mod 8)
g(n) = 1*n+62
f(n) = 2*FLOOR(n/27)+TAU(n)+4 (mod 5)
g(n) = 5*n+34
f(n) = 20*n+FIBO(n)+4 (mod 3)
g(n) = 2*n+71
f(n) = FIBO(n)+7 (mod 5)
g(n) = 3*n+55
f(n) = 21*n+4*log(n) (mod 4)
g(n) = 28*cos(pi/2*n)+24
f(n) = 5*log(n)+n**2 (mod 7)
g(n) = 20
f(n) = 4*n**3+98*cos(1*pi*n)+84 (mod 3)
g(n) = 1*n+20
f(n) = 1*n**2+FIBO(n)+0 (mod 6)
g(n) = 1*n+45
f(n) = 5*n**4+1*log(n) (mod 10)
g(n) = n**2+20
f(n) = PRIME(n)+6 (mod 8)
g(n) = 28*cos(pi/2*n)+17
f(n) = FIBO(n)+1+4*log(n) (mod 4)
g(n) = 2*n+13
f(n) = 86*cos(0.15*pi*n)+71+1*FLOOR(n/29) (mod 5)
g(n) = 40
f(n) = 2*log(n)+89*cos(0.15*pi*n)+191 (mod 5)
g(n) = 30
f(n) = 7*n+4*2**n (mod 4)
g(n) = n**2+18
f(n) = PRIME(n)+10+5*log(n) (mod 7)
g(n) = 30
f(n) = 1*FLOOR(n/15) (mod 6)
g(n) = 10
f(n) = 2*FLOOR(n/10)+2*log(n) (mod 4)
g(n) = 3*n+25
f(n) = 66*cos(0.5*pi*n)+154+5*n (mod 7)
g(n) = 3*n+50
f(n) = FIBO(n)+8+FIBO(n)+6 (mod 5)
g(n) = 1*n+38
f(n) = 21*n+FIBO(n)+8 (mod 8)
g(n) = 3*n+62
f(n) = PRIME(n)+10 (mod 4)
g(n) = n**2+23
f(n) = 5*log(n)+23*n (mod 9)
g(n) = 3*n+59
f(n) = 3*log(n)+17*n (mod 3)
g(n) = n**2+16
f(n) = FIBO(n)+9+FIBO(n)+3 (mod 10)
g(n) = 2*n+47
f(n) = 5*log(n)+n**2 (mod 3)
g(n) = 120
f(n) = PRIME(n)+7 (mod 9)
g(n) = 4*n+27
f(n) = 11*n+99*cos(1*pi*n)+140 (mod 10)
g(n) = n**2+28
f(n) = 3*FLOOR(n/28) (mod 7)
g(n) = 20
f(n) = TAU(n)+10 (mod 4)
g(n) = 5*n+23
f(n) = 22*n+FIBO(n)+10 (mod 9)
g(n) = 20
f(n) = 3*n**2+76*cos(0.3*pi*n)+197 (mod 5)
g(n) = 50
f(n) = 81*cos(1*pi*n)+95+18*n (mod 8)
g(n) = 10
f(n) = 1*log(n)+1*FLOOR(n/29) (mod 7)
g(n) = 10
f(n) = 2*n**3 (mod 3)
g(n) = n**2+21
f(n) = 4*log(n)+99*cos(0.15*pi*n)+132 (mod 4)
g(n) = 20
f(n) = SIGMA(n)+6+PRIME(n)+8 (mod 10)
g(n) = 30
f(n) = 2*log(n)+5*n**3 (mod 10)
g(n) = n**2+20
f(n) = 10*log(n) (mod 4)
g(n) = 20
f(n) = 4*log(n)+25*n (mod 4)
g(n) = 3*n+13
f(n) = 2*FLOOR(n/16)+17*n (mod 4)
g(n) = n**2+25
f(n) = 4*log(n)+25*n (mod 3)
g(n) = 5*n+13
f(n) = 1*log(n)+3*FLOOR(n/14) (mod 10)
g(n) = 1*n+33
f(n) = 3*FLOOR(n/17)+1*log(n) (mod 6)
g(n) = 50
f(n) = 90*cos(0.3*pi*n)+199+3*FLOOR(n/10) (mod 6)
g(n) = 20
f(n) = 1*log(n)+FIBO(n)+7 (mod 3)
g(n) = 4*n+14
f(n) = 3*FLOOR(n/26)+5*log(n) (mod 5)
g(n) = 20
f(n) = 4*log(n)+PRIME(n)+3 (mod 6)
g(n) = 40
f(n) = 4*log(n)+25*n (mod 6)
g(n) = 2*n+27
f(n) = 11*n (mod 8)
g(n) = n**2+16
f(n) = 9*n+16*n (mod 6)
g(n) = 5*n+15
f(n) = 1*FLOOR(n/12) (mod 4)
g(n) = 46*cos(pi/2*n)+16
f(n) = 3*FLOOR(n/30)+4*log(n) (mod 9)
g(n) = 20
f(n) = PRIME(n)+9+SIGMA(n)+4 (mod 8)
g(n) = 74*cos(pi/2*n)+29
f(n) = 24*n (mod 9)
g(n) = 10*n+27
f(n) = 4*n**4+2*log(n) (mod 8)
g(n) = n**2+29
f(n) = 9*n+23*n (mod 7)
g(n) = n**2+28
f(n) = 4*3**n+25*n (mod 9)
g(n) = n**2+26
f(n) = 10*n (mod 8)
g(n) = 5*n+54
f(n) = FIBO(n)+1+4*log(n) (mod 4)
g(n) = 2*n+13
f(n) = 25*n+1*FLOOR(n/17) (mod 6)
g(n) = 4*n+17
f(n) = 3*n**3+2*FLOOR(n/30) (mod 10)
g(n) = 2*n+35
f(n) = SIGMA(n)+4 (mod 4)
g(n) = 20
f(n) = 93*cos(1*pi*n)+187 (mod 3)
g(n) = n**2+26
f(n) = FIBO(n)+4+4*n**3 (mod 5)
g(n) = n**2+30
f(n) = 3*FLOOR(n/24)+4*n**2 (mod 6)
g(n) = 4*n+69
f(n) = 3*e**n+SIGMA(n)+1 (mod 9)
g(n) = 40
f(n) = 2*log(n)+1*n**3 (mod 6)
g(n) = 3*n+57
f(n) = TAU(n)+9 (mod 5)
g(n) = 26*cos(pi/2*n)+15
f(n) = SIGMA(n)+1+19*n (mod 3)
g(n) = 20
f(n) = FIBO(n)+3 (mod 6)
g(n) = 20
f(n) = 2*n**3+SIGMA(n)+5 (mod 7)
g(n) = 55*cos(pi/2*n)+14
f(n) = 55*cos(0.3*pi*n)+95+5*log(n) (mod 9)
g(n) = 10
f(n) = 5*e**n+24*n (mod 10)
g(n) = 30
f(n) = FIBO(n)+1+TAU(n)+7 (mod 7)
g(n) = 10
f(n) = 61*cos(0.15*pi*n)+144+4*log(n) (mod 5)
g(n) = 30
f(n) = 66*cos(0.5*pi*n)+154+5*n (mod 7)
g(n) = 3*n+50
f(n) = 1*n**4 (mod 10)
g(n) = 2*n+18
f(n) = PRIME(n)+2+4*n**2 (mod 10)
g(n) = 20
f(n) = 12*n+57*cos(0.5*pi*n)+188 (mod 7)
g(n) = 5*n+71
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?